Complementos de Análisis 2 Práctica 1: Repaso

Vectores, ecuación de la recta y plano, geometría de las funciones con valores reales, curvas de nivel, derivadas parciales, gradiente.

Profesora: Cecilia Jarne

- 1. Calcular $||\mathbf{u}||$, $||\mathbf{v}||$ y $\mathbf{u} \cdot \mathbf{v}$ para los siguientes vectores de \mathbb{R}^3 :
 - a) $\mathbf{u} = 15\hat{\mathbf{i}} 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}}; \ \mathbf{v} = \pi\hat{\mathbf{i}} + 3\hat{\mathbf{j}} \hat{\mathbf{k}};$
 - b) $u=2\hat{j}-\hat{i}; v=\hat{i}+\hat{j};$
 - c) $\mathbf{u} = -\hat{\mathbf{i}} + 3\hat{\mathbf{k}}; \ \mathbf{v} = 4\hat{\mathbf{j}};$
- 2. Normalizar los vectores de los puntos a) y c) en el ejercicio anterior.
- 3. Calcular el producto vectorial $(u \times v)$ entre los vectores $\mathbf{u} \times \mathbf{v}$ indicados en cada inciso.
- 4. Hallar la recta que pasa por (-1,-1,-1) en la dirección de ĵ.
- 5. Hallar la recta que pasa por (-1,-1,-1) y (1,-1,2).
- 6. Hallar el plano generado por $v_1 = (2,7,0)$ y $v_2 = (0,2,7)$.
- 7. Los siguientes puntos están en coordenadas cilíndricas. Expresar cada uno en coordenadas rectangulares y esféricas:
 - a) $(10, 45^{\circ}, 10)$ d) $(2, 3/4\pi, -2)$
 - b) $(3,\pi/6,4)$ e) $(2,\pi/2,-4)$
 - c) $(1,-\pi/6,0)$ f) $(1,45^{\circ},1)$
- 8. Cambiar los siguientes puntos a coordenadas esféricas y cilíndricas.
 - a) (2,1,-2)
 - b) (0,3,4)
 - c) $(\sqrt{2},1,1)$
- 9. Esbozar curvas de nivel y gráfica de las siguientes funciones. Que tipo de funciones son: Escalares o vectoriales?
 - a) $R^2 \to R$, $(x, y) \to x y + 2$
 - b) $R^2 \to R$, $(x, y) \to x^2 + 4y^2$
- 10. Obtener las superficies de nivel para:
 - a) $R^3 \to R$, $(x, y, z) \to x^2 + y^2$ b) $R^3 \to R$, $(x, y, z) \to x^2 + y^2 + z^2$
- 11. Hallar $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ si:
 - a) f(x) = x.y
 - b) $f(x) = e^{x \cdot y}$
 - c) $f(x) = (x^2 + y^2)loq(x^2 + y^2)$
- 12. Hallar la ecuación del plano tangente a la superficie: $z=x^2+y^3$ en (3,1,10).
- 13. Calcular la matriz de las derivadas parciales para las siguientes funciones:
 - a) $R^2 \to R^2$, f(x,y) = (x,y)
 - b) $R^2 \to R^3$, $f(x,y) = (xe^y + \cos(y), x, e^y)$
 - c) $R^3 \to R^2$, $f(x, y, 7) = (x + e^z + y, x^2y)$
 - d) $R^2 \to R^3$, $f(x,y) = (xye^{xy}, x\sin(y), 5xy^2)$
- 14. Que es el gradiente de una función? Que información se puede obtener a partir de dicha magnitud?

- 15. Calcular los gradientes de las siguientes funciones:
 - a) $f(x, y, z) = xe^{-x^2 y^2 z^2}$
 - b) $f(x, y, z) = \frac{xyz}{x^2 + y^2 + z^2}$
 - c) $f(x, y, z) = z^2 e^x \cos(y)$
- 16. Calcular $\nabla h(1,1,1)$ siendo $h(x,y,z)=(x+z)e^{x-y}$